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Abstract:   Australia has a large operational heavy railway network which is approximately 33,355 route-
kilometres. This network accounted for approximately 55 percent of all freight transport activity in 
Australia in the financial year 2013-14, almost 367 billion tonne-kilometres which was up 50 percent from 
2011-12 (BITRE (2016)).

To provide a safe and reliable railway network to customers, an effective maintenance regime is a key re-
quirement. Planned maintenance and asset renewal in capital intensive industries such as the railway industry, 
which has expensive infrastructure, is a common and effective maintenance practice. Infrastructure is of essen-
tial importance to maintain a reliable customer service. To prevent long unplanned interruptions in the service 
to customers, a proper maintenance and renewal program is required. The objective is to schedule planned 
maintenance and asset renewal jobs in such a way that their impact on the capacity that will be provided 
to customers is minimised while at the same time keeping the infrastructure in good working condition. A 
proper maintenance and renewal schedule limits the frequency with which disruptive emergency maintenance 
is needed.

We investigate a planned maintenance and asset renewal scheduling problem on a railway corridor with train 
traffic in both directions. Potential train journeys are represented by train paths, where a train path is specified 
by a sequence of (location,time)-pairs, and we distinguish between up- and down paths, depending on the 
direction of travel. Necessary maintenance and renewal activities, or work, are specified by a release time, a 
deadline, a processing time and a location. Scheduling work at a particular time has the consequence that the 
train paths passing through the corresponding location while the work is carried out have to be cancelled. An 
instance of the problem is given by a set of train paths and a set of work activities, and the task is to schedule 
all the work such that the total number of cancelled paths is minimised.

There is a vast literature on scheduling problems and on transportation network problems. However, the 
interaction of these problems in contexts such as the railway industry have not been studied thoroughly. Boland 
et al. (2014) study the problem of scheduling maintenance jobs in a network. Each maintenance job causes a 
loss in the capacity of network while it is being done. The objective is to minimize this loss or equivalently 
maximize the capacity over time horizon in such a way that all jobs are scheduled. They model the problem 
as a network flow problem over t ime. This problem and its variants are investigated in Boland et al. (2013), 
Boland et al. (2014), Boland et al. (2015), Boland et al. (2016) and Abed et al. (2017). Our work is different 
from the previous works. The main difference is that we model the capacity by train paths whereas in a network 
flow model over time the capacity is modelled approximately by flows over time.

The primary purpose of this study is to provide further insight into this problem, to characterize the structural 
properties of optimal solutions, and to use these properties to develop efficient c ombinatorial a nd integer 
programming based solution algorithms. We present theoretical and computational results on the performance 
of the developed solution approaches.
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1 PROBLEM DESCRIPTION

We are given a set of maintenance jobs J , and a set of paths P . Each job j ∈ J is specified by its earliest start
time rj , its latest finish time dj , its processing time pj , its start location lsj and its end location lej , all of which
are nonnegative real numbers. There are train paths in two opposite directions. Depending on the direction
of a path, it is called either up-path or down-path. Let [(x1, y1), (x2, y2)] denote a line segment connecting
two points (x1, y1) ∈ R2 and (x2, y2) ∈ R2. Let ∆, δ, L be positive real numbers. The set of up-paths is
denoted by Pu = {σu1 , . . . , σum} where σui = [(i∆, 0), (i∆ + δ, L)] and the set of down-paths is denoted by
Pd = {σd1 , . . . , σdm′} where σdi = [(i∆, L), (i∆ + δ, 0)]. The parameters ∆, δ and L are the headway time,
the travel time, and the length of the corridor, respectively. If a location is possessed by a job in certain time 
interval, then any path that passes this location during this time has to be cancelled. Note that different jobs 
can possess the same location at the same time. The decision in the maintenance scheduling problem is to find 
start times of jobs in such a way that the number of cancelled paths is minimised. A solution is given by a 
vector s = (sj )j∈J of start times.

An instance of the problem can be represented geometrically in the plane where the horizontal and vertical 
axes represent time and location, respectively. Paths correspond to line segments and jobs to rectangular boxes. 
An instance of the problem with four jobs is depicted in Figure 1.

{σd1 , σd2 , σd4 , σd6 , σd7 , σd8 , σu2 , σu3 , σu4 , σu5 , σu6 , σu7 }.
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Corresponding to starting job j ∈ J at time sj ∈ [rj , dj − pj ], there is a set of paths that have to be cancelled
due to overlap with that placement. For each job j ∈ J , let Rj denote the collection of sets of cancelled
paths corresponding to feasible start times for job j. We call the path sets R ∈ Rj possessions. The problem
of finding an optimal start time vector (sj) is equivalent to selecting possessions Rj ∈ Rj such that the
cardinality of their union is minimised. If ∅ ∈ Rj then the j can be removed from J without changing the
problem. If R ⊆ R′ for two elements R,R′ ∈ Rj then R′ can be removed from Rj , because in any optimal
solution R′ can be replaced by R. Finally, if there are two jobs j, j′ such that for every R ∈ Rj there exists
an R′ ∈ Rj′ with R′ ⊆ R then j′ can be removed from J without changing the optimal objective value. In
summary, we can make the following assumptions:

• For all j ∈ J , ∅ 6∈ Rj .

• For all j ∈ J and distinct R,R′ ∈ Rj , R 6⊂ R′.

• For all j, j′ ∈ J , there exists R ∈ Rj such that R′ * R for all R′ ∈ Rj′ .

Figure 1. An instance of the maintenance scheduling problem with four jobs. The dotted boxes represent the 
jobs, and the filled boxes indicate a feasible solution. The set of cancelled paths is

1310



S. Eskandarzadeh et al., Maintenance scheduling in a railway corridor

In this paper, due to space constraints, we omit the proofs. The proofs are included in Eskandarzadeh et al.
(2017)

2 MIP FORMULATIONS

For every path σ ∈ P , let yσ be a binary variable which takes value one if and only if path σ is cancelled. For
every R ∈ R = ∪j∈JRj , let xR be a binary variable which takes value one if at least one job is scheduled
which overlaps exactly the paths in R. Now, we can formulate the problem as follows:

[HSM] Minimise
∑
σ∈P

yσ subject to∑
R∈Rj

xR > 1 for all j ∈ J ,

yσ > xR for all R ∈ R, σ ∈ R,
xR ∈ {0, 1} for all R ∈ R,
yσ ∈ {0, 1} for all σ ∈ P.

In the following, we present another Mixed-integer programming (MIP) formulation for the case that there are
only up-paths, i.e., Pd = ∅. We drop the upper index u and denote the paths by σi.

Definition 1. We call the set of consecutive paths from path σi to path σk a span from path σi to path σk and
denote it by [σi, σk].

A feasible solution for the maintenance scheduling problem can be interpreted as a collection of disjoint
cancelled spans of paths. More formally, a collection ([σi, σk])(i,k)∈B of disjoint spans represents a feasible
solution if for every j ∈ J there exists an Rj ∈ Rj such that⋃

j∈J
Rj ⊆

⋃
(i,k)∈B

[σi, σk].

Now, we can formulate maintenance scheduling problem with unidirectional traffic as a set covering problem.
For 1 6 i 6 k 6 m, let xik be a binary variable indicating that the paths in [σi, σk] are cancelled. Let
F0 = {(i, k) : 1 6 i 6 k 6 m}, and for j ∈ J , let Bj = {(i, k) ∈ F0 : ∃R ∈ Rj , R ⊆ [σi, σk]}. Then the
formulation is

[SCM] Minimise
∑

(i,k)∈F0

(k − i+ 1)xik subject to

∑
(i,k)∈Bj

xik > 1 ∀j ∈ J , (1)

xik ∈ {0, 1} ∀(i, k) ∈ F0.

Note that we can replace F0 by the set

F = {(i, k) ∈ F0 : ∃j1, j2, . . . , jr ∈ J , Rj1 ∈ Rj1 , . . . , Rjr ∈ Rjr
⋃

t∈[1,r]

Rjt = [σi, σk]}.

Let r′j , d
′
j be the index of the leftmost and rightmost paths that are in the set ∪R∈Rj

R.

Definition 2. An instance of the maintenance scheduling problem is said to have interval property if for every
j ∈ J , the elements ofRj have the same cardinality, say p′j . In other words,Rj has the form

Rj = {[σr′j , σr′j+p′j−1], [σr′j+1, σr′j+p′j ], . . . , [σd′j−p′j+1, σd′j ]}.

In the rest of this section, we consider instances of maintenance scheduling problem that have interval property
and include only up-paths.

Lemma 1. Suppose the number of cancelled paths is the same for all jobs, say p′j = p′ for all j ∈ J . Then
the polytope defined by (1) and 0 6 xik 6 1 for all (i, k) ∈ F is integral.
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This follows from the observation that the adjacency matrix of constraints (1) is totally unimodular. An im-
mediate implication of Lemma 1 is that we can solve this special case of the maintenance scheduling problem
efficiently by solving the LP relaxation of the SCM formulation. The number of variables of SCM formulation
can be reduced based on the following lemma.

Lemma 2. There exists an optimal collection of disjoint spans in such a way that every span [σi, σk] in the
collection has the following properties

1. i = d′j − p′j + 1 for some j ∈ J

2. k = d′j − p′j + p′j′ for some j, j′ ∈ J or k = r′j + p′j − 1 for some j ∈ J

The above Lemma is proved by showing that from every optimal solution which does not have the stated
properties, we can find another optimal solution which has the stated properties. As a consequence of the
above Lemma, we can replace set F with subset

F ′ = {(i, k) ∈ F : i = d′j − p′j + 1, k = d′j − p′j + p′j′ or r′j + p′j − 1 for some j, j′ ∈ J }.

3 COMBINATORIAL ALGORITHMS

In this section, we present two combinatorial algorithms for solving the maintenance scheduling problem in the
general case and in the special case that includes only up-paths. In the special case, we present a polynomial
solution algorithm.

Theorem 1. The maintenance scheduling problem is NP-complete

We can prove NP-completeness by a reduction from minimum hitting of horizontal unit segments prob-
lem (Hassin and Megiddo (1991)). Since the maintenance scheduling problem is NP-complete, finding a
polynomial time algorithm is impossible unless P = NP. In the following, we present a dynamic program-
ming algorithm for the problem. Before proceeding, we need to define more notation. We define the following
sets for P,X ⊆ P:

R(X,P ) = {σui ∈ P : ∀σuj ∈ X, j < i} ∪ {σdi ∈ P : ∀σdj ∈ X, j < i},
L(X,P ) = {σui ∈ P : ∀σuj ∈ X, j > i} ∪ {σdi ∈ P : ∀σdj ∈ X, j > i},

J(P ) = {j ∈ J : ∀R ∈ Rj , R ∩ P 6= ∅},
JM (X,P ) = {j ∈ J(P ) : ∃R ∈ Rj , R ∩ P ⊆ X ∩ P},
JR(X,P ) = {j ∈ J(P ) \ JM (X,P ) : ∀R ∈ Rj , R ∩ P ⊆ R(X,P ) ∪ (X ∩ P )},
JL(X,P ) = {j ∈ J(P ) \ JM (X,P ) : ∀R ∈ Rj , R ∩ P ⊆ L(X,P ) ∪ (X ∩ P )}.

The set R(X,P ) contains all paths in P that are on the right-hand side of paths in X . Similarly, the set
L(X,P ) contains all path in P that are on the left-hand side of paths in X . The set J(P ) contains all jobs that
will possess at least one path in P regardless of their start times.

Definition 3. Job j ∈ J(P ) is called splitting if J(P ) = JL(R,P ) ∪ JM (R,P ) ∪ JR(R,P ) for all R ∈ Rj .
Let J ′(P ) denote the set of splitting jobs in J(P ).

Let c(P ) denote the minimum number of cancelled paths in the setP for scheduling jobs in J(P ). In particular,
c(P) is the optimal objective value for the complete problem.

Theorem 2. The optimal value c(P) (and a corresponding optimal solution) can be computed by the following
recursion:

c(P ) =



0 if J(P ) = ∅,
min{|X ∩ P |+ c(P \X) : X ∈ Rj}

for an arbitrary j ∈ J(P ) if J ′(P ) = ∅ 6= J(P ),

min{|X ∩ P |+ c(R(X,P )) + c(L(X,P )) : X ∈ Rj}
for an arbitrary j ∈ J ′(P ) if J ′(P ) 6= ∅.
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If the traffic is only in one direction, the maintenance scheduling problem can be solved in polynomial time.
We start by observing that we can restrict our attention to solutions satisfying a particular property.

Lemma 3. There exists an optimal solution in which for each job j ∈ J , the possession starts at σr′j or
σd′

j′−p
′
j′+1 for some j′ ∈ J and ends at σr′j+p′j−1 or σd′

j′−p
′
j′+pj

for some j′ ∈ J .

The above Lemma is proved by using Lemma 2.

Definition 4. For job j ∈ J , a path is called essential if it is equal to σr′j or σd′
j′−p

′
j′+1 for some j′ ∈ J . For

every j ∈ J , setRej = {[σa, σb] ∈ Rj : σa is an essential path}.

The maintenance scheduling problem with unidirectional traffic and interval property is very close to the real
time scheduling problem with infinite machine capacity in Khandekar et al. (2015). Their dynamic program-
ming algorithm with small modifications can be applied in our setting and this leads to the following result. Let
c(P ) denote the minimum number of cancelled paths in the set P for scheduling jobs in J(P ) in such a way
that every job j ∈ J(P ). Following Lemma 3, it is clear that c(P) is equal to optimal value of maintenance
scheduling problem with unidirectional traffic and interval property and a corresponding optimal solution, is
an optimal solution for the problem.

Theorem 3. For the maintenance scheduling problem with unidirectional traffic and interval property, the
optimal value c(P) (and a corresponding optimal solution) can be computed in polynomial time using the
following recursion. If J(P ) = ∅, then c(P ) = 0. Otherwise,

c(P ) = min
X∈Re

j

{|X ∩ P |+ c(R(X,P )) + c(L(X,P ))},

where j ∈ J(P ) is an arbitrary job of maximal length (i.e., p′j > p′j′ for all j′ ∈ J(P )).

4 COMPUTATIONAL EXPERIMENTS

In this section, we compare MIP formulations on instances that include only up-paths and have the interval
property. The computational experiments were carried out on a Dell Latitude E5570 laptop with Intel Core
i7-6820HQ 2.70GHz processor, and 8GB of RAM running Ubuntu 16.04. We used Python 3.5 and Gurobi
7.0.2 to solve the MIP models. We set a time limit of 100 seconds for solving each instance. If an optimal
solution was not reached within this time frame, the best incumbent was reported.

We compare the strength of each formulation on 12 classes of randomly generated instances. Each class
contains 20 instances. An instance is given by a set of jobs J , a set of paths P , and a set of collections Rj ,
j ∈ J . Each class is represented by a pair (n,L) where n is the number of jobs and L is the maximum number
of distinct lengths. The main steps of the procedure for generating each instance of class (n,L) are as follows:
First, L distinct lengths are chosen randomly from {1, 2, 3, 5, 7, 11}. Second, the number of paths (i.e., m) is
set equal to n times the average of the chosen distinct lengths divided by 2. Third, the length of each job is
chosen randomly from the L chosen distinct lengths. Finally, the first and last path for each job are randomly
chosen from {1, . . . ,m}.
We compare the models based on the following measures: the number of instances that are solved to optimality
by the LP relaxation (N. LP Optimal), the average solution runtime (Avg. IP runtime), the maximum solution
runtime (Max IP runtime), the average of

|Optimal LP relaxation obj. value - Optimal obj. value|
Optimal obj. value

(Avg. LP Gap), the maximum LP Gap (Max LP Gap), the average of

|Incumbent obj. value - Optimal obj. value|
Optimal obj. value

(Avg. MIP Gap) where incumbent refers to a best integer solution found within 100 seconds, and maximum
MIP Gap (Max MIP Gap).

The results are presented in Tables 1 and 2. The LP relaxation of the HSM formulation did not yield the
optimal value for any instance whereas the LP relaxation of SCM formulation gave the optimal value for the
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Table 1. Computational results for SCM formulation. All times are wall clock times and are given in seconds.
(n,Nl) N. LP

Optimal
Avg. IP
Runtime

Max IP
Runtime

Avg. LP
Gap (%)

Max LP
Gap (%)

(30,2) 17 0.01 0.02 0.30 2.38
(30,3) 18 0.01 0.02 0.34 5.26
(30,4) 19 0.01 0.02 0.08 1.52
(50,2) 18 0.06 0.13 0.07 0.76
(50,3) 19 0.06 0.09 0.10 1.96
(50,4) 16 0.07 0.11 0.26 1.67
(70,2) 19 0.30 0.61 0.07 1.47
(70,3) 17 0.34 1.11 0.12 1.19
(70,4) 15 0.20 0.47 0.28 1.97
(100,2) 18 1.90 4.30 0.13 1.68
(100,3) 16 1.69 5.44 0.16 1.21
(100,4) 17 1.24 2.86 0.10 0.79

Table 2. Computational results for HSM formulation. All times are wall clock times and are given in seconds.
(n,Nl) Avg. IP

Runtime
Max IP
Runtime

Avg. LP
Gap (%)

Max LP
Gap (%)

Avg.
MIP
Gap (%)

Max
MIP
Gap (%)

(30,2) 46.55 100.21 51.18 80.23 0 0
(30,3) 73.96 100.33 58.77 70.78 0.26 3.03
(30,4) 76.44 100.19 58.06 76.57 0.11 2.17
(50,2) 71.90 100.10 53.06 78.85 0.77 5.41
(50,3) 81.63 100.59 55.33 75.23 0.58 5.00
(50,4) 91.40 100.31 57.29 74.74 1.26 6.38
(70,2) 90.16 100.25 59.41 77.52 3.95 22.12
(70,3) 96.40 100.10 60.28 74.72 3.55 9.72
(70,4) 100.01 100.09 56.17 73.81 2.99 9.84
(100,2) 91.12 101.73 58.48 76.56 11.70 50.00
(100,3) 100.01 100.09 60.73 77.91 10.66 32.47
(100,4) 100.03 100.23 61.37 73.42 5.52 15.79
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majority of instances. The maximum LP Gap for the SCM formulation on all instances is 5.26% whereas that
of the HSM formulation is 80.23%. The maximum average LP Gap for the SCM formulation on all classes is
0.34% compared to 61.37% for the HSM formulation. The MIP gap on all instances for SCM formulation is
zero whereas the maximum average and maximum MIP gap for HSM formulation on all classes are 11.70%
and 50.00%. It is clear from the computational results that SCM formulation outperforms HSM formulation
by high margin. We did some additional experiments for larger instances, and found that the SCM formulation
typically finds the optimal solution within the time limit of 100 seconds for up to 380 jobs.

5 CONCLUSIONS

In this paper, we studied maintenance scheduling in a railway corridor. We showed that the problem is NP-
complete. We presented an exact algorithm to solve the problem in Theorem 2 which has exponential time
complexity in the worst case. In the special case when there is only unidirectional traffic, we presented a
polynomial time algorithm. Furthermore, we presented a set covering formulation for this special case. The
computational results shows its efficiency and strength.
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